
IOSR Journal of Electronics and Communication Engineering (IOSR-JECE)
e-ISSN: 2278-2834,p- ISSN: 2278-8735.Volume 11, Issue 1, Ver. IV (Jan. - Feb .2016), PP 05-13
www.iosrjournals.org

DOI: 10.9790/2834-11140513 www.iosrjournals.org 5 | Page

SDN Market

Dr. Anitya Kumar Gupta

Abstract: Software-Defined Networking (SDN) is a new and emergent model which had changed the

conventional networks, by breaching their perpendicular incorporation, their network control logic by their

underlying routers & switches, by supporting the unification of network control,& also providing the ability to

program the network. The separation of concerns among the network policies, controlling hardware, and

promoting the traffic, is the key for flexibility. In this manuscript we present a comprehensive overview on SDN,

focusing on several technologies, attaining attention and also the advantages they offer for the cloud -computing

suppliers & users. This manuscript comprises with introduction, motivation for SDN, and also explains their

main concepts and differentiations from conventional networking and the key building blocks of an SDN

infrastructure. This manuscript also provides the in-depth analysis for the hardware infrastructure, northbound

& southbound APIs, SDN controllers, network virtualization layers, network Software languages, & the network

applications along with the in progress research efforts & challenges. Finally, we also plan to examine the

situation of SDN, the key enabler for a software-defined environment.

KeyWords: Cloud-Computing, Conventional Networks, Network Controllers, Network Virtualization,

Software-Defined Networking (SDN), Software Defined Environment, SDN infrastructure.

I. Introduction

The Internet has prompted the making of a computerized society, where (just about) everything is

associated and is open from anyplace. Notwithstanding, in spite of their far reaching selection, customary IP

systems are intricate and difficu lt to oversee. It is both hard to arrange the system as indicated by predefined

strategies, and to reconfigure it to react to blames, load and changes. To make matters significantly more

troublesome, current systems are additionally vert ically incorporated: the control and informat ion planes are

packaged together. The disseminated control and transport system conventions running inside the switches and

switches are the key advances that permit data, as computerized bundles, to go the world over. In spite of their

far reaching selection, conventional IP systems are intricate and difficu lt to oversee [1]. To express the fancied

abnormal state system strategies, system admin istrators need to design every individual system gadget

independently utilizing low-level and frequently merchant particular orders. Notwithstanding the des ign

unpredictability, system situations need to persevere through the progress of issues and adjust to load changes.

Programmed reconfiguration and reaction systems are for all intents and purposes non -existent in current IP

systems. Authorizing the required arrangements in such a dynamic domain is in this manner very difficult.

To make it much more confused, current systems are additionally vertically coordinated. The control

plane (that chooses how to handle system movement) and the informat ion plane (tha t advances activity as per

the choices made by the control plane) are packaged inside the systems admin istration gadgets, lessening

adaptability and blocking advancement and development of the systems admin istration base. The move from

IPv4 to IPv6, began over 14 years back and still to a great extent deficient, demonstrates the veracity of this test,

while truth be told IPv6 spoke to just a convention upgrade. Because of the dormancy of current IP arranges,

another directing convention can take 5 to 12 years to be completely composed, assessed and sent. In like

manner, a fresh start way to deal with change the Internet design (e.g., supplanting IP), is viewed as an

overwhelming undertaking – just not attainable practically speaking [2], [3]. At last, this circumstance has

expanded the capital and operational costs of running an IP system.

The Software Defined Networking (SDN) [4], [5] is a mounting systems administration worldview that

offers plan to change the constraints of current system frameworks. To s tart with, it breaks the vertical mix by

isolating the system's control rationale (the control plane) from the fundamental switches and switches that

forward the movement (the informat ion plane). Second, with the partition of the control and informat ion planes,

system switches get to be basic sending gadgets and the control rationale is actualized in a legitimately brought

together controller (or system working system1), disentangling strategy requirement what's more, system

(re)configuration and development [6]. A d isentangled perspective of this design is appeared in Fig . 1.

Emphasize that a sensibly unified automat ic model does not propose a physically brought together framework

[7]. Actually, the need to ensure sufficient levels of execution, adaptability, and unwavering quality would b lock

such an answer. Rather, creation level SDN system outlines resort to physically conveyed control planes [7], [8].

The partition of the control plane and the information plane can be acknowledged by method for a very mu ch

characterized Software interface is resided among the SDN controller and switches. The controller activ ities

Sdn Market

DOI: 10.9790/2834-11140513 www.iosrjournals.org 6 | Page

direct control over the state in the dataplane components by means of this all around characterized applicat ion

Software interface (API), as delineated in Fig. 1. The most striking case of such an API is OpenFlow [9], [10].

Fig.1. SDN Architecture Simplified View.

An OpenFlow switch has one or more tables of bundle taking care of tenets (stream table). Every

standard matches a subset of the activity and performs certain activit ies (dropping, sending, altering, and so

forth.) on the movement. Contingent upon the tenets introduced by a controller application, an OpenFlow switch

can – trained by the controller – act like a switch, switch, firewall, or perform different parts (e.g., load balancer,

movement shaper, and as a rule those of a middlebox). An imperative result of the product characterized

organizing standards is the division of concerns presented between the meaning of system arrangements , their

usage in exchanging equipment, and the sending of activity.

This partition is crit ical to the fancied adaptability, b reaking the system control issue into tractable

pieces, and making it less demanding to make and present new reflections in systems admin istration,

streamlining system administration and encouraging system development and advanced.

Although SDN and OpenFlow started as educational experiments [9], they gained vital traction within the trade

over the past few years.

Most vendors of business switches currently embrace support of the OpenFlow API in their

instrumentality. The SDN momentum was robust enough to form Google, Facebook, Yahoo, Microsoft,

Verizon, and Deutsche Telekom fund Open Networking Foundation (ONF) [10] with the most g oal of

promotion and adoption of SDN through open standards development. because the initial issues with SDN

measurability were self-addressed [11] – specially the parable that logical centralization tacit a physically

centralized controller, a difficulty we are going to come back to soon – SDN ideas have matured and evolved

from an instructional exercise to a poster success. Google, for instance, has deployed a software -defined

network to interconnect its knowledge centers across the world.

This production network has been in preparation for three years, serving to the corporate to boost

operational potency and considerably scale back prices [8]. VMware’s network virtualization, NSX is one more

example. NSX may be a business answer that delivers a totally practical network in package, provisioned

freelance of the underlying networking devices, entirely primarily based around SDN princip les. As a final

example, the world’s largest IT firms (from carriers and instrumentality makers to cloud suppliers and finan cial-

services companies) have recently joined the SDN consortium like the ONF in addition to also the

OpenDaylight proposal.

A few recent manuscripts have specific some aspects of SDN. An outline of OpenFlow and a brief

literature review are often found in and. These OpenFlow-oriented manuscripts gift a comparatively simplified

three-layer stack composed of high-level network services, controllers, and also the controller/switch interface..

However, equally to the previous works, the manuscript is restricted in terms of scope as well as it doesn't give

an in-depth treatment of basic aspects of SDN. In essence, existing manuscripts lack a radical d iscussion of the

essential components of AN SDN like the network operative systems, package languages, and interfaces. They

conjointly disappoint on the analysis of cross -layer problems like measurability, security, and reliableness. A a

lot of complete summary of current analysis efforts, challenges, and connected standardization activities is

additionally missing.

In the above Fig.2 represents the high-end SDN- Software Defined Networking architecture, here SDN

have controller which provide a centralized or centered control plane for operating the switches. It also permits

the SDN based applications network based operations. By, the outcomes there are visible undemanding changes

Sdn Market

DOI: 10.9790/2834-11140513 www.iosrjournals.org 7 | Page

relating to the conventional network architectures. The SDN ought to thoroughly boost the swiftness of the

network improvement and progress the concert, scalability, flexib ility, ease of management, cost and security.

Fig.2. SDN- high-end Architecture.

The Software Defined computer- SDN and IBM’s software defined environment (SDE) allocate the

computerization and optimization of complete computing provides analogous benefits. In the center, the SDN

provides an advanced abstraction based specification of the network connectivity & the services that can be

automatically and dynamically mapped to a set of underlying network resources. We organize this

manuscript into 6 sections which are described below.

I. Introduction

II. What Is Software Defined Networking?

III. Virtualizat ion & Abstraction.

IV. Software-Defined Networks

V. Current Research

VI. Conclusion

VII. Acknowledgements

Our aim within the early part of the manuscript is to elucidate that SDN isn't a work of fiction as an

advancement of technology. The existence of SDN is the intersection of a series of legacy ideas, along with

technology drivers, and includes the current and future desires. The thoughts that are underlying SDN – the are

the separation of the management and their dataplanes, the flow abstraction is upon the forwarding choices are

created, along with the logical centralization of network management, and also the ability to program the

network [17]. With the recent trends in networking– that specifically have the advancements like switch atomic

conversion and also the curiosity in the possible styles of network virtualizat ion – the resulting is the paradigm

shift in networking technologies. By the results of the high business interest and also the potential to vary the

standing quo of networking from mult iple views, variety of standardization efforts around SDN are on-going, as

we tend to additionally discuss in Section III these virtualization and other technologies more detalied.

Section IV is that the nucleus of this manuscript, presenting an in depth Associate relating to the

Software Defined Networks. The comprehensive analysis also represents the essential components of an SDN

infrastructure employing a bottom-up, bedded approach. The alternative for a bedded approach is grounded on

the very fact that SDN permits thinking of networking on two of the elementary ideas, which are widespread in

different disciplines of science they are: A) separation of considerations – relating to the leveraging the

construct of abstraction and B) Rule. Relating to the, bottom-up approach it divides the networking down side

into eight parts they are: 1) hardware infrastructure, 2) south interfaces, 3) network virtualization -hypervisor

layer between the forwarding devices and also the network in operation systems, 4) network in operation

systems- SDN Controllers and control platforms, 5) northward interfaces which are used to provide a typical

computer code abstraction to the upper layers, primarily the network applications, 6) virtualizat ion

discrimination based slicing techniques that provide special purpose libraries or computer code languages and

compilers, 7) network computer code languages, and eventually 8) network applications. Additionally, we tend

to additionally consider cross-layer issues like debugging and troubleshooting mechanisms.

The discussion in Section V on the current Research efforts made by the researchers , challenges that

are currently objecting the SDN, and future work that specifies the upcoming research concerns relating to the

SDN. The section VI finally concludes and provides a conclusion of the author and finally it ends our

manuscript.

Sdn Market

DOI: 10.9790/2834-11140513 www.iosrjournals.org 8 | Page

II. What Is Software Defined Networking?
Software-Defined Networking- SDN was initially coined to signify the thoughts and effort around

OpenFlow at University of Stanford [24]. It was init ially defined as, a novel network architecture in which their

advanced state in the dataplane is admin istrated by a remote control plane which is detached from the previous

architectures. In the networking technologies and considering it from many situations it has shifted from the

original outlook of SDN, by referring to anything that involves software as being SDN. We define an SDN as a

network arch itecture that consists of 4 stakes:

1) Control & dataplanes are detached. Control functionality is unconcerned from the network devices that

will be converted into simple packet based forward ing components.

2) Forwarding decisions are flow-based, as an alternative of target- based. The flow can be broadly defined

as a set of packet field values that are acting as a match criterion and also as a set of instructions or actions. With

the context of SDN/OpenFlow, the flow is a succession of packets flanked by a source along with a destination.

All the packets of the stream receive indistinguishable service procedures at the promoting devices. Flow

abstraction allows a coalesce behavior of various sort of network devices, switches, which also includes routers,

firewalls, & middleboxes. The Flow programming also enables unparalleled flexib ility which is limited to the

abilities of the applied flow tables.

3) Control logic is stimulated to an exterior unit, known as Network Operating System (NOS) or SDN

controller. NOS is a software platform which runs on service server knowledge and also provides the necessary

resources & abstractions that make possible the indoctrination of a variety of devices which are based on a

plausibly federalized, intangible network outlook. Their purpose is consequently parallel to the established

operating system.

4) Network is programmable - The software applicat ions are running over the NOS which interacts with

underlying dataplane strategies. It is the basic feature of SDN.

The consistent centralization of control logic, are in met iculous, it offers quite a few additional

benefits. Initial it is simple and less error-prone to modify network policies through high level languages and

software components, compared with low level device specific configurations. Subsequently, a control program

can automatically react to spurious changes of the network state and thus maintain the high -level policies intact.

Thirdly, the centralization of the control logic in a controller with global knowledge of the network state

simplifies the development of more sophisticated networking functions, services and applications.

Following the SDN thought introduced in associate degree SDN will be outlined by 3 basic

abstractions: (1) forward ing, (2) specification, and (3) distribution. Abstractions area unit essential tools of

analysis in technology and knowledge technology, being already associate degree omnipresent feature of the

many laptop architectures and systems.

Ideally, the forwarding abstraction ought to permit any forwarding behavior desired by the network

application, the management program whereas concealment details of the underlying hardware. OpenFlow is

one realization of such abstraction, which may be seen because the cherish a “device driver” in associate degree

software package. The distribution abstraction ought to protect SDN applicat ions from the vagaries of

distributed state, creating the distributed control downside a logically centralized one. Its realization requires a

standard distribution layer that in SDN resides in the NOS. This layer has 2 essential functions. Initially, it is

liab le for putting in the management commands on the forwarding devices. Subsequently, it collects standing

data about the forwarding layer (network devices and links), to offer a global network read to network

applications.

The last abstraction is specification, which ought to permit a network application to precise the

required network behavior without being liable for implementing that behavior itself. This could be achieved

through virtualization solutions, as well as schedule languages. These approaches map the abstract

configurations that the applications specific based on a simplified, abstract model of the network, into a physical

configuration for the worldwide network read exposed by the SDN controller. Fig. 3 depicts the SDN design,

concepts and building blocks. As antecedently mentioned, the sturdy coupling between control and knowledge

planes has created it troublesome to feature new functionality to ancient networks, a reality illustrated in

Fig.4. the coupling of the management and knowledge planes (and its physical embedding with in the network

elements) makes the development and also makes the routing algorithms ready, as it'd imply a modification of

the management plane of all network devices – through the installation of recent code and, also hardware

upgrades in some cases.

The latest networking options area unit normally introduce via costly, specialized and hard -to configure

equipment (aka middleboxes) like load balancers, intrusion detection systems (IDS), and firewalls, among

others. These middleboxes ought to be placed strategically within the network, creating it even tougher to later

modification the network topology, configuration, and practicality. In distinction, SDN decouples the

Sdn Market

DOI: 10.9790/2834-11140513 www.iosrjournals.org 9 | Page

management plane from the network devices associate degreed becomes an external entity: the network

operating system or SDN controller.

Fig.3. SDN Architecture and their Abstractions -fundamental.

Fig.4. SDN and conventional Networking- Diffrences

II.I Advantages-Sdn:

The advantages of SDN are:

1. It is trouble-free to program the application as the abstractions provided by means of the control policy and by

which the network based programming language can also be shared.

2. A ll applicat ions be capable of taking benefit of the alike network informat ion, leading to additional

dependable and efficient policy decisions, while reuse control plane software modules.

3. These applications be capable of seize actions from any piece of the network. Therefore there is no need to

invent a specific policy about the locality of the latest functionality.

4. Load balancing and the routing applications be capable of combined successively, with the load balancing

choices having the priority over the routing strategies.

III. Virtualization & Abstraction:
SDN defines open, standard abstractions for networks that hide the details of the underlying

infrastructure which is similar to the operating system. It abstracts the complexity of underlying hardware by

exporting common application programming interfaces (APIs) to services such as file systems, virtual memory,

sockets, and threads. These abstractions provide new tools to enable the richer networking functionalities

Sdn Market

DOI: 10.9790/2834-11140513 www.iosrjournals.org 10 | Page

demanded by recent industry trends including dynamic v irtual server which has dynamic workload, along with

the mult i-resident cloud computing, in addit ion to warehouse-scale data centers.

Existing standards and abstractions have proven inadequate for delivering this functionality Bat scale,

for example, 12-bit virtual local area network (VLAN) identifiers allow for up

to 4,096 isolated tenants. To address this, networks have become increasingly complex, including proprietary

routing, traffic engineering mechanisms, and labor-intensive configuration of network appliances used to secure

and optimize mult i-t ier systems.

SDN offers the potential to reverse this trend by addressing these problems in the controller software

running on commodity servers that programs network hardware using open protocols. The dominant use of SDN

that enables solutions to these problems is network virtualizat ion. Network virtualization involves abstracting

the physical network in two ways:

(1) Isolating multiple tenants and giving them a “view” and

(2) Presenting an abstract topology that may differ from the physical topology, e.g., an abstract topology with all

hosts attached to a single, large switch. A related concept is Network Functions Virtualizat ion (NFV), which

replaces specialized appliances such as firewalls, load balancers, and intrusion detection systems with virtual

machines (VMs) running on conventional servers [4–7] connected to the network. In the server world,

virtualizat ion has enabled new applications and revenue streams that would not have been technically possible

or economically feasible otherwise, it is anticipated the same will be true for networking.

IV. Software- Defined Networs:
SDN design will be pictured as a composition of various layers, as shown in Fig. 5 (b). Every layer has

its own specific functions. whereas a number of them ar fo rever gift in associate SDN preparation, like the south

API, network operational systems, north API and network applications, others could also be gift solely specia lly

deployments, like hypervisor- or language-based virtualization. Fig.5 presents a tri-fo ld perspective of SDNs.

The SDN layers are diagrammat ical with in the center (b) of the figure, as explained higher than. Fig. 5(a) along

with 5 (c) depict a plane familiarized read and a system style perspective, severally. The subsequent sections

introduce every layer, following a bottom-up approach. For every layer, the core properties and ideas ar

explained supported the various technologies and solutions.

IV.I. Layers

The various layers that are resided in the SDN arch itecture are discussed below.

 Infrastructure

An SDN infrastructure, equally to a standard network, consists of a group of networking

instrumentation. the most distinction resides within the undeniable fact that those ancient physical devices area

unit currently easy forwarding components while not embedded management or code to require autonomous

choices. The network intelligence is far away from the info plane devices to a logically -centralized system, i.e.,

the network software system and applications, as shown in Fig.5 (c).

Southbound Interfaces

Southbound interfaces (or southbound APIs) are the connecting bridges between control and

forwarding elements, thus being the crucial instrument for clearly separating control and data plane

functionality. However, these APIs are still tightly tied to the forwarding elements of the underlying physical or

virtual infrastructure. Typically, a new switch can take two years to be ready for commercializat ion if built from

scratch, with upgrade cycles that can take up to nine months. The software development for

a new product can take from six months to one year. The initial investment is high and risky. As a central

component of its design the southbound APIs represent one of the major barriers for the introduction and

acceptance of any new networking technology. In this light, the emergence of SDN southbound API proposals

such as OpenFlow [9] is seen as welcome by many in the industry. These standards promote interoperability,

allowing the deployment of vendor-agnostic network devices.

Network Hypervisors

One of the attention-grabbing options of virtualizat ion technologies nowadays is that the proven fact

that virtual machines is simply migrated from one phys ical server to a different and may be created and/or

destroyed on-demand, sanctioning the provisioning of elastic services with versatile and straightforward

management. Different workloads need completely different network topologies and services, like flat L2 or L3

services, or maybe additional complicated L4- L7 services for advanced practicality.

Therefore, it's exhausting to stay the first network configuration for a tenant, virtual machines cannot

migrate to discretional locations, and also the addressing theme is mounted and exhausting to vary

Sdn Market

DOI: 10.9790/2834-11140513 www.iosrjournals.org 11 | Page

Network Operating Systems / Controllers

Traditional operational systems offer abstractions (e.g., high-level programming APIs) for accessing

lower-level devices, manage the synchronal access to the underlying resources (e.g., hard drive, network

adapter, CPU, memory), and supply security protection mechanisms.

 SDN is secure to facilitate network management and ease the burden of resolution networking issues

by means that of the logically-centralized management offered by a network software package (NOS).

Northbound Interfaces

Northbound and the Southbound interfaces are the two key abstractions relating to SDN environment.

Southbound interface had a accepted policy-OpenFlow, the universal northbound interface is tranquil an

unwrapped issue. At this moment it may still be a bit too early to define a standard northbound interface, as use-

cases are still being worked out. An abstraction that would allow network applications not to depend on specific

implementations is important to explore the full potential of SDN. The northbound interface is mostly a software

ecosystem, not a hardware one as is the case of the southbound APIs.

Fig.5. SDN in (a) p lanes, (b) layers, & (c) system design architecture.

Language-Based Virtualization

There are 2 essential uniqueness of virtualizat ion solutions square measure the aptitude of expressing

modularity and of permitting totally different levels of abstractions whereas still guaranteeing desired properties

like protection. Pyretic is a motivating example of a artificial language that provides this sort of high -level

abstraction of constellation. SDNs, high-level programming languages are used to design:

1) Form an abstraction of higher level to abridge the task of programming for the forward ing components or

devices.

2) Facilitate added prolific and problem-focused environment designed for network based software

programmers, towards speeding up the development in addition to innovation.

3) p romote the software modularizat ion in addition to code reusability in network control plane;

4) Advance the expansion of network virtualizat ion.

Network Applications

Network applications will be seen because the “network brains”. They implement the control-logic

which will be translated into commands to be put in within the knowledge plane, dictating the behavior of the

forwarding devices. Software-defined networks will be deployed on any ancient network atmosphere, from

home and enterprise networks to knowledge centers and net exchange points. Such kind of environments has

light-emitting diode to a good array of network applications.

Accessible network applications carry out ancient practicality like routing, load equalizat ion, and

security policy social control, however conjointly explore novel approaches, like reducing power consumption.

different examples embody fail-over and dependableness functionalities to the info plane, end-to-end QoS social

control, network v irtualization, quality management in wireless networks, among several others . the variability

of network applications, combined with real use case deployments, is predicted to be one amongst the most

important forces on fostering a broad adoption of SDN.

Sdn Market

DOI: 10.9790/2834-11140513 www.iosrjournals.org 12 | Page

Despite the wide selection of use cases, most SDN applications will be classified in one amongst 5

categories: traffic engineering, quality and wireless, measure and watching, security and responsibleness and

knowledge center networking.

V. Current Research:
Currently out there OpenFlow switches area unit terribly various which separates the appliance

expectations from the switch of mult iple v irtual flow tables and switch drivers. Flow tables area unit supposed

to fulfill the expectations of applications switch flow tables. Effort to develop a standard library to implement

OpenFlow one.0 and 1.3 protocol endpoints (switch agents and controllers) a collection of the parameterized

table properties every|for every} table certain each flow table, and also the data mask that may be passed Flow

Table capability Flow matching rules area unit hold on in flow tables within network giant and economical flow

tables to store the foundations. The actual capability in terms of OpenFlow table size has OpenFlow one.0

understood state explosion owing to its flat table consequently, saving up to fourth thousand flow table entries .

Shadow MACs propose label switch for resolution 2 enforced by straightforward hardware tables

rather than these days, the outturn industrial|of economic|of business} OpenFlow switches shall be addressed

within the switch style method support of central processing unit power of current commercial OpenFlow

switches. These are powerful CPUs into the switches, as projected in between external controllers and also the

OpenFlow agent with in effective approach forward could be a native style of SDN switches

evolving Switch styles & Hardware Enhancements SDN switch styles are unit showing during a myriad of

hardware SDN switch devices. with flow tables of up to 1M actual match entries and up to 1K applied to SDN

to scale back prices in switch and routing Recent proposals on cache-like OpenFlow switch arrangements

limitat ions of flow table sizes with clever switch styles. The application flow table area unit alternat ive

approaches towards evolving switch styles embody deliver superior SDN software package switches

OpenFlow 1.0 switches [435], providing a artifact SDN knowledge planes proposes to enhance switches with

FPGA algorithmic abstraction of OpenFlow controllers wherever every controller sees the controllers below as

OpenFlow switches. Modularity in most SDN managementlers forces developers to re implement attempt to

deliver the goods modularity in SDN control programs.

VI. Conclusion
 Software Define Networking is a upcoming networking technology and the traditional networks are

complex and hard to manage. One of the reasons is that the control and data planes are vertically integrated and

vendor specific. Another, concurring reason, is that typical networking devices are also tightly tied to line

products and versions. In other words, each line of product may have its own particular configuration and

management interfaces, imply ing long cycles for producing product updates or upgrades. All this has given rise

to vendor lock-in problems for network infrastructure owners, as well as posing severe restrictions to change

and innovation. Software-Defined Networking created an opportunity for solving these long-standing problems.

Some of the key ideas of SDN are the introduction of dynamic programmabil ity in forwarding devices through

open southbound interfaces, the decoupling of the control and data plane, and the global view of the network by

logical centralization of the "Network brain".

While data plane elements became dumb, but highly efficient and programmable packet forward ing

devices, the control plane elements are now represented by a single entity, the controller or network operating

system. Applications implementing the network logic run on top of the controller and are much easier to

develop and deploy when compared to traditional networks. Given the global view, consistency of policies is

straightforward to enforce. SDN represents a major paradigm shift in the development and evolution of

networks, introducing a new pace of innovation in networking infrastructure.

In spite of recent and interesting attempts to survey this new chapter in the history of networks the

literature was still lacking, to the best of our knowledge, a single extensive and comprehensive overview of the

building blocks, concepts, and challenges of SDNs. Trying to address this gap, the present manuscript used a

layered approach to methodically dissect the state of the art in terms of concepts, ideas and components of

software-defined networking, covering a broad range of existing solutions, as well as future directions. We

started by discussing the new paradigm along with traditional networks. Following a bottom-up approach, we

provided an in-depth overview of software-defined networking

SDN has successfully managed to pave the way towards a next generation networking, spawning an

innovative research and development environment, promoting advances in several areas: switch and controller

platform design, evolution of scalability and performance of devices and architectures, promotion of security

and dependability. We will continue to witness extensive activity around SDN in the near future. Emerg ing

topics requiring further research are, for example: the migration path to SDN, extending SDN towards carrier

transport networks, realization of the network as- a-service cloud computing paradigm, or software-defined

environments.

Sdn Market

DOI: 10.9790/2834-11140513 www.iosrjournals.org 13 | Page

Acknowledgements
We would like to thank the rev iewer and our professor guide who had given us support and kept efforts

in suggesting us and reviewing the article to achieve the high end quality and also to the reviewers who are

going to review this manuscript.

References
[1]. Wenfeng Xia,Yonggang Wen, Chuan Heng Foh, Dusit Niyato, Haiyong Xie. (2015). A Survey on Software-Defined Networking.

IEEE COMMUNICATION SURVEYS & TUTORIALS . 17 (1), 27-51.

[2]. Diego Kreutz,Fernando M. V. Ramos, Paulo Verissimo, Christian Esteve Rothenbermb, Siamak Azodolmolky Steve Uhlig. (2014).
Software-Defined Networking: A Comprehensive Survey. IEEE COMMUNICATION SURVEYS . 17 (2), 1-61.

[3]. C. Dixon D. Olshefski V. Jain C. DeCusatis W. Felter J. Carter M. Banikazemi V. Mann J. M. Tracey R. Recio. (March/May 2014).
Software defined networking to support the software defined environment. IBM Journal of Resedarch & Development. 58 (2/3),

3:1-3:14.
[4]. T. Benson, A. Akella, and D. Maltz, “Unraveling the complexity of network management,” in Proceedings of the 6th USENIX

Symposium on Networked Systems Design and Implementation, ser. NSDI’09, Berkeley, CA, USA, 2009, pp. 335–348.

[5]. B. Raghavan, M. Casado, T. Koponen, S. Ratnasamy, A. Ghodsi, and S. Shenker, “Software-defined internet architecture:
Decoupling architecture from infrastructure,” in Proceedings of the 11th ACM Workshop on Hot Topics in Networks, ser. HotNets-
XI. New York, NY, USA: ACM, 2012, pp. 43–48.

[6]. A. Ghodsi, S. Shenker, T . Koponen, A. Singla, B. Raghavan, and J. Wilcox, “Intelligent design enables architectural evolution ,” in

Proceedings of the 10th ACM Workshop on Hot Topics in Networks, ser. HotNets-X. New York, NY, USA: ACM, 2011, pp. 3:1–
3:6.

[7]. N. Mckeown, “How SDN will Shape Networking,” October 2011. [Online]. Available: http://www.youtube.com/watch?v=c9-K5O
qYgA

[8]. 7.S. Schenker, “The Future of Networking, and the Past of Protocols,” October 2011. [Online]. Available:
http://www.youtube.com/watch?v= YHeyuD89n1Y

[9]. H. Kim and N. Feamster, “Improving network management with software defined networking,” Communications Magazine, IEEE,
vol. 51, no. 2, pp. 114–119, 2013.

[10]. N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling
innovation in campus networks,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp. 69–74, Mar. 2008.

[11]. ONF, “Open networking foundation,” 2014. [Online]. Available: https://www.opennetworking.org/
[12]. T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S.

Shenker, “Onix: a distributed control platform for large-scale production networks,” in Proceedings of the 9th USENIX conference
on Operating systems design and implementation, ser. OSDI’10. Berkeley, CA, USA: USENIX Association, 2010, pp. 1–6.

[13]. Mark Zuckerberg – founder of Facebook

[14]. Researchers of University of Washington
[15]. Bill Gates – founder of Microsoft
[16]. Dr. Anitya Kumar Gupta – Member of Campus London and Student Ambassador of Firefox.

http://www.youtube.com/watch?v

